
1

April 4, 1999

Xinetics Deformable Mirror (DM):
Initial Data and Characteristics

Contents:
1. Introduction & Physical Characteristics ...1

2. Power-On State and Preliminary Flattening Results for the DM3

3. Influence Function Data ...7

4. MatLab Codes for Reading the Data ...8

5. Appendix 1 – MatLab Routine: readzygofile.m10

6. Appendix 2 – MatLab Routine: readzygoheaderdata.m11

7. Appendix 3 – MatLab Routine: readzygophasedata.m13

8. Appendix 4 – MatLab Routine: getdata.m ..14

1. Introduction & Physical Characteristics

The goal of the DM project at Goddard has been to verify the DM operation and
determine its characteristics for optimizing its control – both in support of the JPL
adaptive optical system (implemented in DCATT) and for future Goddard reference.

The Xinetics Goddard DM consists of 349 PMN (lead magnesium niobate)
actuators attached to a 2 mm thick mirror surface. Clear aperture = 5.85” = 148.6 mm.
Control aperture = 5.52” (this is the portion of the mirror surface under direct actuator
control). The mirror surface consists of a 2 mm face-sheet of ultra-low expansion (ULE)
glass silver – polished and then bonded onto a circular grid of actuators. The actuator
grid is spaced at 7 mm increments (center to center) and given the numbering scheme and
coordinate system shown in Figure 1. A photograph of the actuator grid is shown in
Figure 2 and was taken using a rear view of the DM with the back cover plate removed.

2

Figure 1. Xinetics 349 DM Actuator Numbering Scheme

Figure 2 Actuator Grid – DM Rear Cover Plate Removed.

3

Zygo
DM
Mac

DM
Electronics

Figure 3. DM Computers and Electronics

Zygo
DM

Figure 4. Zygo Interferometer and the
Xinetics DM.

The actuators operate from between –40V to +100V which provides a maximum
mechanical stroke of 4µm . However, the maximum “inter-actuator” displacement
between actuators is 2µm (50V). When maximum inter-actuator displacement is
reached, the Zener diode circuitry is activated to prevent further actuator displacement
which could potentially damage the mirror surface.

The –40V to +100V range is accessible through 65,536 digital commands (actual
values are in the 1532,768 (2)± = range) sent to the DM electronics via a MAC 950
Quadra (Figure 3 and Figure 4). The -32768 digital commands are mapped to -40V while
the +32768 values are mapped to 100V. Using this mapping scheme, the actuator
displacements are nearly linear and parabolic otherwise.

To characterize the mirror surface, data was initially taken with a Zygo Mark IV
PSI (phase shifting interferometer) - equipped with a 6” beam expander and connected to
an HP Apollo 750 running HP-UX. This interferometer was subsequently upgraded to a
Zygo model GPI-XP. The computers are networked via DCATTSUN – operating in
building 7 (the DM is operating in the CIAF of Building 7).

2. Power-On State and Preliminary Flattening Results for the DM

On power-up the DM is far from flat due to random inter-actuator displacements
that exist on the µm scale. Typically, the power-on mirror surface is characterized by the
PV (peak to valley) and rms values (1 wave =632 8. nm):

PV rms wave= =1194 0 233. ; . . (1)
A Zygo “screen shot” showing the intensity and OPD (optical path difference) maps for
this data is given in Figure 5 (note that the piston and tilt aberrations have been removed
by Zygo). For comparison, before powering on the DM, the mirror surface is relatively
flat:

PV rms wave= =0356 0 046. ; . (2)
as illustrated in Figure 6. A summary of the preliminary flattening results is given by

PV rms wave= = ≈0 277 0 028 36. ; . /λ , (3)

4

and shown in Figures 7 and 10 (note: in the case of Figure 7 the intensity map is shown
with very little tilt). For comparison of the data in equations (1), (2), and (3), a cross-
sections of these OPD maps are displayed in Figures 8, 9, and 10 using identical length
scales.

Figure 6. Mirror Surface Before Power-Up.

Figure 5. Zygo Data: Power-On State of the DM.

5

Figure 7. Zygo Data: Preliminary Flattening Results

Figure 8. OPD (Optical Path Difference) Cross-Section of the DM in
it’s No-Power State.

6

Figure 9. Cross-Section of the DM in its Power-On State.

Figure 10. Cross Section after Flattening

7

3. Influence Function Data
The influence function data file “infl_3c.dat” consists of an initial arbitrarily

chosen actuator (# 3C – see Figure 1) and then 3 additional actuators spaced at 10
actuator increments. These actuators form the square grid pattern shown in Figure 11 and
are displaced at a + 8000 command value relative to the “flattened” mirror surface given
by Equation (3) (see also Figures 7 and 10). For reference, the individual actuators are
labeled on the intensity map of Figure 11 using the numbering scheme illustrated in
Figure 1.

Comparing Figures 1 and 11 shows that the Zygo optical system images an
arbitrary image point on the DM surface from left to right and then from top to bottom to
the Zygo display, i.e., creates an inversion of the DM surface. Therefore, this mapping of
actuators must be accounted for when sampling the Zygo data at a given actuator
position. This aspect is discussed in further detail in the next section describing the
MatLab codes for reading the Zygo data.

Figure 11. Zygo Screen Shot of “infl_3c.dat”

C6 = #65

#279

#269

#75

Actuator
Numbers:

8

4. MatLab Codes for Reading the Data
The Zygo influence function data file is stored in the Zygo binary file format. A

MatLab code for reading this data, “readzygofile.m” is listed in Appendix 1. This routine
calls two additional routines, “readzygoheaderdata.m” and “readzygophasedata.m”, listed
in Appendices 2 and 3, respectively. A MatLab code example, “getdata.m”, illustrating
how these routines may be used is listed in Appendix 4. The phase data output of
“getdata.m” is displayed as a contour map in Figure 12 below.

The phase data (stored in the MatLab variable “phase1” of Appendix 4) is an
array whose indices give the x-y values of the pixel locations at a given data point (see
Figure). Typically, these values will range from 0-239 along each axis as shown in the
figure above. The z value gives the OPD height measured in waves (relative to zero) and
is obtained from the array using a command like:

z = phase1(y_value, x_value). (4)
For example (and for JPL reference), the x-y-z values for each of the actuators shown in
Figure 12 are given by

z phase z phase

z phase z phase
actuator actuator

actuator actuator

= = = =

= = = =

1 64 211 1025 1 63 98 1459

1 177 209 0 978 1 175 97 1397
65 75

269 279

(,) . (,) .

() . (,) .
#

#

1 24 4 4 44 34 4 4 44 1 24 4 4 4 34 4 4 4
1 24 4 4 44 34 4 4 4 4 1 24 4 4 44 34 4 4 44

(5)

Figure 12. Contour Map of the “infl_3c.dat” with Actuator Numbers Labeled

Actuators:

C6 = #65

#269

#75

#279

9

But there is an important detail that should not be overlooked, namely, that to address a
given actuator location within the data set, the indices must be reversed to “undo” the
transformation given by the segment of code shown in Figure 13 – which orients the
MatLab display to match the Zygo display screen (taken from Appendix 4). This
transformation is illustrated graphically in Figure 13 for the actuators displayed in the
“infl_3c.dat” data set.

Figure 13. “Transformation” of the DM Surface Through the Zygo
Optical System

% Flip the phase data to match the Zygo display:

sy = header.PhaseHeight:-1:1;
phase1 = phase([sy],:);

10

5. Appendix 1 – MatLab Routine: readzygofile.m

function [header, phase, success] = readzygofile2(filename)
%
% ReadZygoFile reads all the data from the specified Zygo file.
%
% Input:
% filename = the name of the Zygo file to read.
%
% Output:
% header = a structure containing selected contents from the file header.
% intens = an array containing the intensity data from the file.
% phase = an array containing the phase data from the file.
% success = a scalar indicating success (1) or failure (0) of the function.
%
% Versions:
%09/14/98 Ladd Wheeler Original version
Modified by Bruce Dean and Anand Sivaramakrishnan

success = 1;

% Open the file for read-only binary access with big-endian format.
file = -1;
[file, message] = fopen (filename, 'r', 'ieee-be');
if file == -1
 success = 0;
 error (message);
end

% Now read the header data.
[header, success] = readzygoheaderdata (file);
if success == 0
 error ('Failure in reading Zygo header data');
end

% Now read the phase data.

[phase, success] = readzygophasedata (file, header);

if success == 0
 error ('Failure in reading Zygo phase data');
end

% Close the file.
fclose (file);

11

6. Appendix 2 – MatLab Routine: readzygoheaderdata.m

function [header, success] = ReadZygoHeaderData (file)
%
% ReadZygoHeaderData reads selected data from the specified Zygo file.
%
% Input:
% file = the file id of the Zygo file to read.
%
% Output:
% header = a structure containing selected contents from the file header.
% success = a scalar indicating success (1) or failure (0) of the function.
%
% Versions:
% 09/15/98 Ladd Wheeler Original version

success = 1;

% Read Magic Number
status = fseek (file, 0, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to 0 in file.');
end
[magic_number] = fread (file, 1, 'int32');
if magic_number ~= -2011495569
 success = 0;
 error ('Magic number in file is not valid.');
end

% Read Header Format
header_format = fread (file, 1, 'int16');
if header_format ~= 1
 success = 0;
 error ('Header format value in file is not 1.');
end

% Read Header Size
header_size = fread (file, 1, 'int32');
if header_size ~= 834
 success = 0;
 error ('Header size value in file is not 834.');
end

% Read Intensity Description Data
status = fseek (file, 48, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to Intensity Origin values in file.');
end
header.IntensOriginX = fread (file, 1, 'int16');
header.IntensOriginY = fread (file, 1, 'int16');

header.IntensWidth = fread (file, 1, 'int16');
header.IntensHeight = fread (file, 1, 'int16');

header.NBuckets = fread (file, 1, 'int16');
header.IntensRange = fread (file, 1, 'uint16');
header.IntensBytes = fread (file, 1, 'int32');

% Read Phase Description Data
header.PhaseOriginX = fread (file, 1, 'int16');
header.PhaseOriginY = fread (file, 1, 'int16');

header.PhaseWidth = fread (file, 1, 'int16');
header.PhaseHeight = fread (file, 1, 'int16');

header.PhaseBytes = fread (file, 1, 'int32');

12

% Read Time Stamp and Comment
header.TimeStamp = fread (file, 1, 'int32');
header.Comment = fread (file, 82, 'char');

% Read Other
header.Source = fread (file, 1, 'int16');
% **
%dummy = fread (file, 1, 'char');
% **
header.IntfScaleFactor = fread (file, 1, 'float32');
header.Wavelengthin = fread (file, 1, 'float32');
header.NumericAperature = fread (file, 1, 'float32');
header.ObliquityFactor = fread (file, 1, 'float32');
skip = fread (file, 1, 'float32');
header.CameraRes = fread (file, 1, 'float32');

% Read Next Clumps of Descriptives
status = fseek (file, 218, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to PhaseRes in file.');
end
header.PhaseRes = fread (file, 1, 'int16');
header.MinimumAreaSize = fread (file, 1, 'int32');
header.DisconAction = fread (file, 1, 'int16');
header.DisconFilter = fread (file, 1, 'float32');
header.ConnectionOrder = fread (file, 1, 'int16');
header.DataSign = fread (file, 1, 'int16');
header.CameraWidth = fread (file, 1, 'int16');
header.CameraHeight = fread (file, 1, 'int16');

status = fseek (file, 300, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to PhaseAvgs in file.');
end
header.PhaseAvgs = fread (file, 1, 'int16');
header.SubtractSysErr = fread (file, 1, 'int16');

status = fseek (file, 364, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to RemoveTiltBias in file.');
end
header.RemoveTiltBias = fread (file, 1, 'int16');
header.RemoveFringes = fread (file, 1, 'int16');
header.MaxAreaSize = fread (file, 1, 'int32');
skip = fread (file, 1, 'int16');
header.PreConnectFilter = fread (file, 1, 'float32');

13

7. Appendix 3 – MatLab Routine: readzygophasedata.m

function [phase, success] = readrygorhaserata (file, header)
%
% ReadZygoPhaseData reads Phase data from the specified Zygo file.
%
% Input:
% file = the file id of the Zygo file to read.
% header = a structure containing selected contents from the file header.
%
% Output:
% phase = an array containing the phase data.
% success = a scalar indicating success (1) or failure (0) of the function.
%
% Versions:
% 09/15/98 Ladd Wheeler Original version.

success = 1;

% Check if any Phase Data is in file
if header.PhaseBytes == 0
 error ('There is no Phase data in the file.');
end

% Seek to the beginning of the Intensity Data
offset = 834 + header.IntensBytes;
status = fseek (file, offset, 'bof');
if status ~= 0
 success = 0;
 error ('Failure to seek to the Phase Data in the file.');
end

% Preallocate the phase array to speed up the execution.
phase = zeros (header.PhaseHeight, header.PhaseWidth);

% Read the Phase Data
% According to Zygo documentation, the data is written in "row-major order".
% This unit assumes that the scan starts at the upper left (row 1, col 1)
% and moves left-to-right along EACH row.

for row = 1:header.PhaseHeight
 for col = 1:header.PhaseWidth
 phase(row,col) = fread (file, 1, 'int32');
 end
end

14

8. Appendix 4 – MatLab Routine: getdata.m

% This is "getdata.m" - a sample MatLab code for reading Zygo data

% This is the function call to Ladd's routine for reading in the
% Zygo phase data:

Portions of this code were contributed by Anand Sivaramakrishnan.

success = 1;
[header, phase, success] = readzygofile2('/home/aodm/src/data/infl_3c10.dat');

% Legal phase data range is (inclusive of these values):

MINPHASE = -2097152;
MAXPHASE = 2097152;

% Initialize two variables that will be used to eliminate
% bad data points.

phase_setfunc = zeros (header.PhaseWidth, header.PhaseHeight);
phase_setfunc = phase_setfunc + 1;

% Eliminate the bad data points (Anand Sivaramakrishnan)):

for row = 1:header.PhaseHeight
 for col = 1:header.PhaseWidth
 if ((phase(row, col) < MINPHASE) | ...
 (phase(row, col) > MAXPHASE))
 phase(row, col) = 0;
 phase_setfunc(row, col) = 0;
 end
 end
end

% Convert the binary data to wave units:

phase = phase * header.IntfScaleFactor * header.ObliquityFactor / 4096;

% Flip the phase data to match to match the Zygo display:

sy = header.PhaseHeight:-1:1;
phase1 = phase([sy],:);

figure(1);
contour(phase1,20);

